ALLERGEN IMMUNOTHERAPY FOR THE TREATMENT OF ALLERGIC RHINITIS AND/OR ASTHMA

FINAL SYSTEMATIC REVIEW REPORT

September 2015

Systematic Review Team:
George A. Wells, Jesse Elliott, Shannon Kelly, Amy Johnston, Becky Skidmore, Joshua Kofsky
Conflict of Interest Statement

No study members report any affiliations or financial involvement (e.g., employment, consultancies, honoraria, stock options, expert testimony, grants or patents received or pending, or royalties) that may present a potential conflict of interest in the allergen immunotherapy for the treatment of allergic rhinitis and/or asthma Drug Class Review.

Acknowledgments

The Ontario Drug Policy Research Network (ODPRN) is funded by grants from the Ontario Ministry of Health and Long-term Care (MOHLTC) Health System Research Fund. The opinions, results and conclusions reported in this paper are those of the authors and are independent from the funding sources and supporting organizations.

Note

Some details are censored in this report so as not to preclude publication. Publications (when available) and/or final unpublished reports will be available on the ODPRN website (www.odprn.ca).
Table of contents

Table of contents ... 3
List of exhibits .. 5
Introduction .. 3
 Rationale .. 6
 Objective ... 6
 Research questions ... 6
Methods .. 7
 Identifying relevant secondary studies .. 7
 PICO framework ... 7
 Search strategy ... 8
 Article selection ... 9
 Quality assessment ... 9
 Summary of findings .. 9
Results ... 10
 Study selection ... 10
 Characteristics of the included reviews ... 10
 Quality of the included reviews .. 10
Efficacy ... 14
 Allergic asthma .. 14
 Allergic rhinitis ... 15
Safety .. 19
 Allergic asthma .. 19
 Allergic rhinitis ... 20
Subgroup analyses ... 23
 Efficacy among adults with allergic asthma or allergic rhinitis ... 23
 Safety among adults with allergic asthma or allergic rhinitis .. 25
 Efficacy among children with allergic asthma or allergic rhinitis .. 26
Key messages ... 29
 Children and adults .. 29
 Adults ... 30
 Children ... 31
References ... 33
Appendix 1: Search strategy ... 35
Appendix 2: Excluded records ... 39
Appendix 3: Included records .. 48
Appendix 4: Irretrievable records ... 50
Appendix 5: AMSTAR rating for each included systematic review .. 51
List of exhibits

Exhibit 1: Population, intervention, comparator, outcome criteria .. 7
Exhibit 2: PRISMA flow diagram.. 11
Exhibit 3: Characteristics of included systematic reviews ... 12
Exhibit 4: Efficacy of subcutaneous and sublingual immunotherapy among participants with allergic asthma ... 14
Exhibit 5: Efficacy of subcutaneous and sublingual immunotherapy among participants with allergic rhinitis .. 17
Exhibit 6: Anaphylaxis and death reported in mixed populations (adults and children/adolescents) with allergic asthma .. 19
Exhibit 7: Anaphylaxis and death reported in mixed populations (adults and children/adolescents) with allergic rhinitis .. 21
Exhibit 8: Efficacy of subcutaneous and sublingual immunotherapy among adults with allergic asthma or rhinitis .. 24
Exhibit 9: Anaphylaxis and death reported among adults with allergic asthma or rhinitis 26
Exhibit 10: Efficacy of subcutaneous and sublingual immunotherapy among children with allergic asthma or rhinitis .. 27
Exhibit 11: Anaphylaxis and death reported among children with allergic asthma or rhinitis 28
Exhibit 12: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among children and adults .. 30
Exhibit 13: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among adults ... 31
Exhibit 14: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among children and adults .. 32
Introduction

Rationale
Seasonal and perennial allergic rhinitis and allergic asthma represent important public health concerns, affecting up to 30% of adults (1) and up to 40% of children (2). Signs and symptoms include sneezing, stuffy or runny nose, post-nasal drip, and itchy nose (3). There is considerable cost associated with allergic rhinitis and allergic asthma, including medication cost, days of work lost, and reduced quality of life (4). Clinical practice guidelines recommend that patients who have an inadequate response to pharmacologic interventions be referred for immunotherapy (3).

Allergen immunotherapy comprises two classes of therapy: subcutaneous immunotherapy (SCIT) and sublingual immunotherapy (SLIT). Subcutaneous immunotherapy involves the injection of an allergen extract, generally comprised of the allergen to which the patient is sensitive. Sublingual immunotherapy involves placement of a tablet or drops containing the allergen under the patient’s tongue. Both SCIT and SLIT are potentially associated with important benefits and harms (3), although head-to-head comparisons of the two treatments are largely lacking.

A recent international consensus statement suggests that allergen immunotherapy is underused because of a lack of agreement about efficacy and insufficient data on its cost effectiveness (5). We undertook this systematic review of reviews to summarize the current evidence for the effectiveness and safety of allergen immunotherapy in the treatment of allergic rhinitis with or without allergic asthma.

Objective
This systematic review of reviews aims to rapidly summarize clinical and safety evidence from multiple systematic reviews of allergen immunotherapy for the treatment of allergic rhinitis or allergic asthma, including SCIT and SLIT.

Research questions
RQ1. What is the current evidence for the efficacy or effectiveness of allergen immunotherapy interventions for the treatment of allergic rhinitis or allergic asthma compared to placebo, standard care or each other?

RQ2. What is the current evidence for the safety of allergen immunotherapy interventions for the treatment of allergic rhinitis or allergic asthma compared to placebo, standard care or each other?

RQ3. Is the efficacy and safety of allergen immunotherapy different in adult or children (< 18 yr) subpopulations with allergic rhinitis or allergic asthma?
Methods

This was a focused rapid systematic review of existing systematic reviews with a limited search. In order to adequately assess a large body of research literature within a limited time frame, the scope of the review was limited in the following ways:

1. Only secondary evidence assessments were eligible for inclusion, including health technology assessments, indirect treatment comparisons, network meta-analyses, systematic reviews and/or meta-analyses.
2. A date-limited (5 years) search strategy was developed, and a limited grey literature search was conducted.
3. Although we aimed to capture all relevant evidence syntheses regardless of language or publication status, it was not possible to retrieve all located articles and/or translate them within the timelines of this review.

Although this is a rapid assessment of existing evidence syntheses, systematic and structured methods were used throughout to limit bias and ensure a transparent, comprehensive review of the current literature.

Identifying relevant secondary studies

We included systematic reviews that met the following criteria:

- Described a search strategy and a criteria for including and excluding studies;
- Published in English (or a language that can be translated within the time frame of this review) and be retrievable within the condensed time frame of this review;
- Met the requirements of the population, intervention, comparator, and study design criteria and eligibility requirements outlined below.

PICO framework

A PICO framework was used to evaluate the relevance of eligible evidence syntheses (Exhibit 1).

Exhibit 1: Population, intervention, comparator, outcome criteria

<table>
<thead>
<tr>
<th>PICO Element</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population</td>
<td>Adult or pediatric patients with seasonal or perennial allergic rhinitis (also known as hayfever or rhinoconjunctivitis) or allergic asthma</td>
</tr>
<tr>
<td>Interventions</td>
<td>• Sublingual immunotherapy (SLIT), including Oralair, Grastek, Ragwitek</td>
</tr>
<tr>
<td></td>
<td>• Subcutaneous immunotherapy (SCIT), including Pollinex-R, allergen extracts and serums</td>
</tr>
<tr>
<td>Comparators</td>
<td>• Placebo</td>
</tr>
<tr>
<td></td>
<td>• Usual care</td>
</tr>
<tr>
<td></td>
<td>• Active control (SCIT or SLIT to each other, environmental control, medications such as topical nasal corticosteroid or cromolyn preparations, oral antihistamines, decongestants, beta-agonists, oral steroids, bronchodilators, ocular corticosteroids, and montelukast)</td>
</tr>
<tr>
<td></td>
<td>• Single or multi-allergen SLIT</td>
</tr>
<tr>
<td>Outcomes: Efficacy/Effectiveness</td>
<td>All outcomes will be considered, although certain clinical outcomes may be prioritized for reporting. Outcomes will not be used to assess eligibility of relevant reviews; however, the study must report on the efficacy or effectiveness of allergen immunotherapy(ies). We will not include reviews focused on pharmacokinetic outcomes (considered out of scope) or those solely focused on economic or cost</td>
</tr>
</tbody>
</table>
Search strategy
The search strategy was developed and tested through an iterative process by an experienced medical information specialist in consultation with the review team. The database searches were executed on May 31, 2015. Using the OVID platform, we searched Ovid MEDLINE®, Ovid MEDLINE® In-Process & Other Non-Indexed Citations, and Embase. We also searched the Cochrane Library on Wiley (containing the Database of Systematic Reviews, DARE, HTA Database, and CENTRAL).

Strategies utilized a combination of controlled vocabulary (e.g., “Rhinitis, Allergic”, “Desensitization, Immunologic”, “Administration, Sublingual”) and keywords (e.g., seasonal allergies, hyposensitization therapies, SLIT). Vocabulary and syntax were adjusted across databases. Results were limited to the period 2010 to the present. We used a sensitive systematic review/meta-analysis filter and a validated systematic review filter to focus results. Animal-only and opinion-pieces were removed from the results. Grey literature was sought using CADTH’s Grey Matters Light (www.cadth.ca/sites/default/files/is/cadth_Handout_greymatters_light_e.pdf).
Specific details regarding the strategies appear in Appendix 1.

Article selection
Eligibility criteria were applied to each title and abstract by two independent review authors in a standardized manner using DistillerSR, an online systematic review management and screening tool. Uncertainties were resolved by discussion and consensus with a third review author. All potentially eligible studies were obtained in full-text format. Two independent review authors applied the eligibility criteria to the full-text record, and a final decision was made for inclusion. The reviewers were not blinded as to the study authors or centre of publication prior to study selection.

Quality assessment
We evaluated each systematic review by applying the AMSTAR checklist to ensure that the following requirements were met:

- A comprehensive search strategy involving two or more electronic databases;
- An explicit statement describing the inclusion (and ideally exclusion) criteria applied to candidate studies. Ideally the review mentions a priori development of this criteria and/or use of a protocol;
- Illustrate use of a formal critical appraisal or quality assessment process for all included studies and report the outcome of that process.
- Report findings on efficacy or safety outcomes of interest using details on the study and patient characteristics of two or more studies, and provide the direction of the findings from any pooled analyses (narrative or meta-analysis) carried out.

Summary of findings
From each high-quality systematic review, we extracted the following characteristics:

- Review characteristics (first author, year of publication, county of origin)
- Study design, length of treatment
- Patient characteristics, sample size
- Interventions, comparators, outcomes data

Data were extracted by a single review author and checked for accuracy and completeness by a second review author. Any disagreements were resolved through discussion and consensus with a third review author. The findings from reviews with similar topics have been grouped and synthesized using a narrative approach. Where possible, review findings are summarized and presented by clinical or safety outcome with further detail by comparison, e.g., patient-reported symptom scores for the following comparisons:

- SLIT versus placebo
- SCIT versus placebo
- SLIT versus SCIT
- SLIT or SCIT versus active control

Where possible, data for children and adults are presented separately.
Results

Study selection
The initial literature search returned 257 database abstracts, and 31 articles were identified through grey-literature searching. Of these, 90 were excluded following review of the title and abstract, and 198 were evaluated at full-text screening. Of the 198 full-text articles reviewed, 161 were excluded for a variety of reasons as described in the PRISMA flow diagram (Exhibit 2; Appendix 2). The full-text version of 9 articles could not be located (Appendix 3). The final number of included records was 36 (Appendix 4). Of these, 11 records could not be translated during the review period (Appendix 4). In total, 19 unique SRs published in English were summarized in the final review (6-24).

Characteristics of the included reviews
We assessed the characteristics of the 19 unique systematic reviews that met our PICO criteria (Exhibit 3). Included reviews were published between 2010 and 2015. Of these, 3 included patients with a primary complaint of allergic asthma (6, 18, 24), and 15 included patients with a primary complaint of allergic rhinitis (7-9, 11-17, 19-23). One review included both patients with allergic asthma or allergic rhinitis and provided the data separately by indication (10). All included RCTs, while 2 also included non-randomized studies (15, 16). The number of included studies in each review ranged from 8 to 268, and varied by the indication for allergen immunotherapy. The duration of therapy ranged from 2 week to more than 5 weeks; only 1 SR compared the efficacy and safety of immunotherapy of short (< 3 yr) and long (> 3 yr) duration (21). Of the included reviews, 4 involved only SCIT (6, 14, 16, 18), 6 involved only SLIT (11, 12, 15, 19, 22, 24), and 9 involved both SCIT and SLIT.

Most of the included systematic reviews compared either SCIT or SLIT to placebo. One systematic review included a comparison to pharmacotherapy; however, the comparison groups were not well described and data are not included in this review (17). One systematic review involved comparison between cluster and conventional administration of SCIT. This comparison was deemed outside the scope of this review.

Quality of the included reviews
The AMSTAR checklist was applied to 19 systematic reviews that met the PICO criteria at the full-text screening phase. Of these, 14 scored less than 8 points on the AMSTAR checklist (Appendix 5). Of note, one systematic review received a score of zero points (25). This review was performed as part of the development of a guideline and met our criteria for inclusion. It did not, however, provide sufficient detail to achieve a score on the AMSTAR checklist.
Exhibit 2: PRISMA flow diagram

Records identified through database searching
\(n = 257 \)

Additional records identified through other sources
\(n = 29 \)

Records screened
\(n = 286 \)

Excluded based on title or abstract \(n = 88 \)

Full-text articles assessed for eligibility
\(n = 198 \)

Excluded \(n = 162 \)
- Does not involve people with allergic rhinitis or asthma \(n = 3 \)
- Not a systematic review \(n = 102 \)
- Treatment not included in PICO \(n = 11 \)
- Other \(n = 8 \)
- Abstract \(n = 30 \)
- Could not locate \(n = 9 \)

Included records
\(n = 36 \) (unique 19 reviews)
Exhibit 3: Characteristics of included systematic reviews

<table>
<thead>
<tr>
<th>Study</th>
<th>Country of conduct</th>
<th>No. of included studies</th>
<th>Included study designs</th>
<th>Population</th>
<th>Duration</th>
<th>Indication</th>
<th>Immunotherapy evaluated</th>
<th>Type of analysis</th>
<th>Included allergens</th>
<th>AMSTAR Score (/11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td></td>
</tr>
<tr>
<td>Lu 2015</td>
<td>China</td>
<td>19</td>
<td>RCT</td>
<td>Mixed</td>
<td>4 mo–3 yr</td>
<td>AA</td>
<td>SCIT</td>
<td>Meta-analysis</td>
<td>HDM</td>
<td>7</td>
</tr>
<tr>
<td>Tao 2013</td>
<td>China</td>
<td>16</td>
<td>RCT</td>
<td>Mixed</td>
<td>10 wk–25 mo</td>
<td>AA +/- AR +/- conjunctivitis</td>
<td>SLIT</td>
<td>Meta-analysis</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Abramson 2010</td>
<td>Australia</td>
<td>88</td>
<td>RCT</td>
<td>Mixed</td>
<td>≤ 3 yr</td>
<td>AA</td>
<td>SCIT</td>
<td>Meta-analysis</td>
<td>HDM, pollen, animal dander, mould, latex</td>
<td>7</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td></td>
</tr>
<tr>
<td>Seidman 2015</td>
<td>US</td>
<td>267</td>
<td>CPG, SR, RCT</td>
<td>Mixed</td>
<td>NR</td>
<td>Seasonal and perennial AR</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>CADTH, 2014</td>
<td>Canada</td>
<td>8</td>
<td>RCT</td>
<td>Mixed</td>
<td>9 w–2 yr</td>
<td>Seasonal AR +/- conjunctivitis</td>
<td>SCIT, SLIT</td>
<td>Network meta-analysis</td>
<td>Grass pollen</td>
<td>7</td>
</tr>
<tr>
<td>Feng 2014</td>
<td>China</td>
<td>9</td>
<td>RCT</td>
<td>Mixed</td>
<td>2.3 mo–3 yr</td>
<td>AR</td>
<td>SCIT (cluster)</td>
<td>Meta-analysis</td>
<td>Grass pollen, cat hair</td>
<td>8</td>
</tr>
<tr>
<td>Devillier 2014</td>
<td>France</td>
<td>28†</td>
<td>RCT</td>
<td>Mixed</td>
<td>NR</td>
<td>Seasonal AR</td>
<td>SLIT</td>
<td>Meta-analysis</td>
<td>Grass pollen</td>
<td>5</td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>Canada</td>
<td>20</td>
<td>RCT</td>
<td>Mixed</td>
<td>1–34 mo</td>
<td>Seasonal AR</td>
<td>SCIT, SLIT</td>
<td>Meta-regression</td>
<td>Grass pollen</td>
<td>3</td>
</tr>
<tr>
<td>Larenas-Linnemann 2013</td>
<td>Mexico</td>
<td>28</td>
<td>RCT, NRS</td>
<td>Children and adolescents</td>
<td>6 mo–3 yr</td>
<td>AR or RC +/- AA</td>
<td>SLIT</td>
<td>Narrative</td>
<td>Grass or tree pollen, HDM, Alternaria, peanut, milk</td>
<td>6</td>
</tr>
<tr>
<td>Lin 2013a (Kim 2013, Erekosima 2013, Lin 2013b, Chelladurai 2013)</td>
<td>US</td>
<td>142‡</td>
<td>RCT</td>
<td>Mixed</td>
<td>NR</td>
<td>Allergic RC +/- AA</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>Pollen, cat, dog, cockroach, HDM</td>
<td>11</td>
</tr>
<tr>
<td>Manzotti 2013</td>
<td>Italy</td>
<td>7</td>
<td>RCT</td>
<td>Mixed</td>
<td>5.3–7 mo</td>
<td>Seasonal allergic RC</td>
<td>SLIT</td>
<td>Narrative</td>
<td>Grass pollen</td>
<td>1</td>
</tr>
<tr>
<td>Meadows 2013 (Dretzke 2013)</td>
<td>UK</td>
<td>28</td>
<td>RCT</td>
<td>Mixed</td>
<td>Mean 3.6 yr</td>
<td>AR +/- AA</td>
<td>SCIT, SLIT</td>
<td>Meta-analysis</td>
<td>Grass, tree or ragweed pollen, fungi, Parietaria</td>
<td>10</td>
</tr>
<tr>
<td>Calderon 2013</td>
<td>UK</td>
<td>44</td>
<td>RCT</td>
<td>Mixed</td>
<td>6–28 mo</td>
<td>AR + AA</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>HDM</td>
<td>3</td>
</tr>
<tr>
<td>Study</td>
<td>Country of conduct</td>
<td>No. of included studies</td>
<td>Included study designs</td>
<td>Population</td>
<td>Duration</td>
<td>Indication</td>
<td>Immunotherapy evaluated</td>
<td>Type of analysis</td>
<td>Included allergens</td>
<td>AMSTAR Score (/11)</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------</td>
<td>------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>--------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Purkey 2013</td>
<td>US</td>
<td>12</td>
<td>RCT</td>
<td>NR</td>
<td>≤ 5 yr</td>
<td>Seasonal and perennial AR</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>Pollen</td>
<td>3</td>
</tr>
<tr>
<td>Calderon 2011</td>
<td>UK</td>
<td>42</td>
<td>RCT</td>
<td>Mixed</td>
<td>3–36 mo</td>
<td>Seasonal and perennial allergic RC or conjunctivitis</td>
<td>SLIT</td>
<td>Meta-analysis</td>
<td>Pollen</td>
<td>11</td>
</tr>
<tr>
<td>Larenas-Linnemann 2011</td>
<td>Mexico</td>
<td>31§</td>
<td>RCT, NRS</td>
<td>Children and adolescents</td>
<td>3–36 mo</td>
<td>Seasonal or perennial AR or RC +/- AA</td>
<td>SCIT</td>
<td>Narrative</td>
<td>Pollen, grass pollen, birch, fungus</td>
<td>5</td>
</tr>
<tr>
<td>Radulovic 2011</td>
<td>UK</td>
<td>60</td>
<td>RCT</td>
<td>Mixed</td>
<td>2 wk-3 yr‡</td>
<td>Seasonal and perennial AR</td>
<td>SLIT</td>
<td>Meta-analysis</td>
<td>Parietaria, ragweed, tree pollen, HDM, cat</td>
<td>10</td>
</tr>
<tr>
<td>Bousquet 2010</td>
<td>France</td>
<td>94</td>
<td>RCT</td>
<td>Mixed</td>
<td>NR</td>
<td>AR conjunctivitis, +/- AA</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>Grass pollen</td>
<td>2</td>
</tr>
<tr>
<td>Calderon 201Y</td>
<td>UK</td>
<td>33</td>
<td>RCT</td>
<td>Mixed</td>
<td>1–84 mo</td>
<td>Seasonal allergic RC</td>
<td>SCIT, SLIT</td>
<td>Narrative</td>
<td>Grass pollen</td>
<td>1</td>
</tr>
</tbody>
</table>

Note: AA = allergic asthma, AR = allergic rhinitis, CPG = clinical practice guideline, HDM = house dust mite, NR = not reported, NRS = non-randomized study, RCT = randomized controlled trial, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, SR = systematic review, RC = rhinoconjunctivitis.

†Authors report that 28 publications were included. Unclear if this represents the number of unique RCTs.
‡Authors report that 142 articles were included. Unclear if this represents the number of unique RCTs.
§Authors report that 31 articles were included. Unclear if this represents the number of unique RCTs.
¶Three consecutive grass pollen seasons.
Efficacy

Allergic asthma

Three systematic reviews assessed the efficacy of allergen immunotherapy among patients with allergic asthma (children and adults; Exhibit 4) (6, 18, 24). Of these, two involved comparison between SCIT and placebo (6, 18), and one involved comparison between SLIT and placebo (24). The reviews by Abramson and colleagues (6) and Lu and colleagues (18) included only trials involving participants with allergic asthma, while Tao and colleagues included trials that assessed efficacy among participants with allergic asthma with or without allergic rhinitis and/or allergic conjunctivitis (24).

Exhibit 4: Efficacy of subcutaneous and sublingual immunotherapy among participants with allergic asthma

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Population</th>
<th>Included allergens</th>
<th>Comparison</th>
<th>Unadjusted SMD (95% CI); I²; k</th>
<th>Symptom score</th>
<th>Medication score</th>
<th>Disease-specific QoL</th>
<th>Adherence*</th>
<th>AMSTAR</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tao 2013</td>
<td>AA, with or without AR and/or conjunctivitis</td>
<td>HDM, grass, birch</td>
<td>SLIT v. placebo</td>
<td>-0.74 (-1.26 to -0.22); 91%; NR</td>
<td>-0.78 (-1.45 to -0.11); 93%; NR</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>6</td>
<td>March 2012</td>
</tr>
<tr>
<td>Abramson 2010</td>
<td>AA</td>
<td>HDM, pollen, dander, mould, latex</td>
<td>SCIT v. placebo</td>
<td>-0.59 (-0.83, -0.35), 73%; 34</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>August 2005</td>
</tr>
<tr>
<td>Lu 2015</td>
<td>AA</td>
<td>HDM</td>
<td>SCIT v. placebo</td>
<td>-0.94 (-1.58 to -0.29); 92%; 13</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>7</td>
<td>February 2013</td>
</tr>
</tbody>
</table>

Note: AA = allergic asthma, AR = allergic rhinitis, HDM = house dust mite, k = number of included studies, QoL = quality of life, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, SMD = standard mean difference, TCS = total combined symptom–medication score.

*Treatment adherence/discontinuation, not discontinuation due to adverse events.

No data were available for total combined symptom–medication score, disease-specific quality of life, or medication adherence. Only one systematic review reported medication use among participants with allergic asthma (24). In this review, the use of asthma medication was significantly lower among participants assigned to SLIT than among those assigned to placebo. It was unclear how many systematic reviews contributed data to this score, and there was high heterogeneity between the trials (I² = 93%).

All 3 systematic reviews reported symptom scores among participants with allergic asthma. In each review, participants assigned to either SCIT or SLIT had significantly improved symptoms relative to those assigned to placebo. The number of studies that contributed data to the review by Tao and colleagues (24) was not reported. In total, 34 and 13 trials contributed data to the effect estimates by Abramson and colleagues (6) and Lu and colleagues (18), respectively; the difference in number of included trials is likely because of the number of allergens included in each review. Both systematic
reviews reported high heterogeneity among the included trials for this outcome.

One additional study narratively assessed the efficacy of SCIT versus placebo and SLIT versus placebo (10).

One systematic review (6) reported on SCIT compared with inhaled steroid (budesonide). One trial was included in this comparison, in which the use of budesonide resulted in “…faster and more striking improvement during the first few months as compared to immunotherapy [SCIT], with an even more rapid decline in benefits on cessation of budesonide. Immunotherapy on the other hand, resulted in slow but steady improvement which did not decline as rapidly as budesonide on cessation.” Whether the difference in symptom scores was statistically significant was not reported.

Allergic rhinitis

Four systematic reviews provided pooled effect estimates for the comparison of SLIT and placebo (12, 13, 20, 22), and 2 systematic reviews compared SCIT and placebo (13, 20) (Exhibit 5). Two systematic reviews provided a comparison between SCIT and SLIT (13, 20). An additional 5 reviews narratively assessed the efficacy of SLIT or SCIT in this population (9, 10, 17, 19, 21). There was wide variation in quality among the systematic reviews that provided pooled effect estimates, with AMSTAR scores ranging from 3 to 10. The literature search of the most recent systematic review was conducted in 2013 (month not reported).

Among the systematic reviews that compared SLIT with placebo, two assessed total combined symptom–medication scores (12, 20); both reported significant improvement among participants taking SLIT relative to those taking placebo. Two systematic reviews assessed symptom scores and medication scores (20, 22): both reported significant improvement among patients taking SLIT for each outcome, with moderate to high heterogeneity for both estimates (Exhibit 5). One systematic review assessed disease-specific quality of life, with a significant improvement reported among participants taking SLIT. One study assessed discontinuation among participants taking either Oralair or Grazax (13). Both SLIT products were associated with a significant increase in discontinuations compared with placebo. One systematic review performed an indirect comparison between SLIT products (Oralair and Grazax; Exhibit 5). Dranitsaris and colleagues reported that Oralair was associated with a significant improvement in symptom scores relative to Grazax (SMD – 0.18, 95% CI –0.32 to –0.04).

Two systematic reviews reported pooled effect estimates for SCIT versus placebo (13, 20). Meadows and colleagues (20) reported a significant improvement in total combined symptom–medication score, medication score, and disease-specific quality of life among participants taking SCIT relative to those taking placebo. Both Dranitsaris and colleagues (13) and Meadows and colleagues (20) reported a significant improvement in symptom score among participants taking SCIT relative to those taking placebo. Dranitsaris and colleagues (13) reported significantly more discontinuations among participants taking SCIT than among those taking placebo (RR 3.16, 95% CI 1.40 to 7.10).

Two systematic reviews assessed the efficacy of SCIT versus SLIT, both using indirect treatment comparisons. Dranitsaris and colleagues (13) compared symptom scores among participants taking Oralair (SLIT) with those taking SCIT, and reported a significant improvement among participants
taking Oralair. In contrast, Meadows and colleagues (20) reported a significant improvement in symptom scores among participants taking SCIT relative to those taking SLIT. Meadows and colleagues also reported significant improvements in medication scores in favour of SCIT, with no significant difference in disease-specific quality of life between SCIT and placebo.
Exhibit 5: Efficacy of subcutaneous and sublingual immunotherapy among participants with allergic rhinitis

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Population</th>
<th>Allergens</th>
<th>Comparison</th>
<th>Unadjusted SMD (95% CI); I^2; k</th>
<th>TCS</th>
<th>Symptom score</th>
<th>Medication score</th>
<th>Disease-specific QoL</th>
<th>Adherence*</th>
<th>AMSTAR</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLIT v. placebo</td>
<td></td>
</tr>
<tr>
<td>Devillier 2014</td>
<td>Allergic RC</td>
<td>Grass, tree or ragweed pollen</td>
<td>SLIT v. placebo</td>
<td>Hedges' g: -0.31 (-0.39, -0.22); NR; 11</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>5</td>
<td>2013; month NR</td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>AR</td>
<td>Grass pollen</td>
<td>Oralair (SLIT) v. placebo</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RR 4.88 (2.41, 9.79); 6 trial arms</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>AR</td>
<td>Grass pollen</td>
<td>Grazax (SLIT) v. placebo</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RR 1.90 (1.21, 3.00); 8 trial arms</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, Alternaria, Parietaria</td>
<td>SLIT v. placebo</td>
<td>-0.40 (-0.55, -0.25); 39%; 6</td>
<td>-0.33 (-0.42, -0.25); 42%; 42</td>
<td>-0.27 (-0.37, -0.17); 49%; 35</td>
<td>-0.37 (-0.52, -0.22); 59%; 7</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td>Radulovic 2010</td>
<td>AR</td>
<td>Parietaria, tree or ragweed pollen, HDM, cat</td>
<td>SLIT v. placebo</td>
<td>—</td>
<td>-0.49 (-0.64, -0.34); 61%; 49</td>
<td>-0.32 (-0.43, -0.21); 50%; 38</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>August 2009</td>
</tr>
<tr>
<td>SLIT v. SLIT</td>
<td></td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>AR</td>
<td>Grass pollen</td>
<td>Oralair v. Grazax (SLIT v. SLIT; indirect)</td>
<td>—</td>
<td>-0.18 (-0.32, -0.04); 7 trial arms</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td></td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>AR</td>
<td>Grass pollen</td>
<td>SCIT v. placebo (indirect)</td>
<td>—</td>
<td>-0.30 (-0.39, -0.20); 7 trial arms</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>RR 3.16 (1.40, 7.10); 7 trial arms</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, Alternaria, Parietaria</td>
<td>SCIT v. placebo</td>
<td>-0.48 (-0.67, -0.29); 22%; 8</td>
<td>-0.65 (-0.85, -0.45); 57%; 17</td>
<td>-0.55 (-0.75, -0.34); 57%; 16</td>
<td>MD: -0.74 (-0.92, -0.56); 0%; 8</td>
<td>—</td>
<td>—</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td>Author, year</td>
<td>Population</td>
<td>Allergens</td>
<td>Comparison</td>
<td>TCS</td>
<td>Symptom score</td>
<td>Medication score</td>
<td>Disease-specific QoL</td>
<td>Adherence*</td>
<td>AMSTAR</td>
<td>Search date</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
<td>-----------</td>
<td>------------</td>
<td>-----</td>
<td>---------------</td>
<td>-------------------</td>
<td>----------------------</td>
<td>------------</td>
<td>--------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>AR</td>
<td>Grass pollen</td>
<td>Oralair v. SCIT (indirect)</td>
<td>—</td>
<td>-0.21 (-0.36, -0.07); 7 trial arms; favours Oralair</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>3</td>
<td>December 2012</td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, Alternaria, Parietaria</td>
<td>SCIT v. SLIT (indirect)</td>
<td>—</td>
<td>SSD: 0.35 (0.13, 0.59) favours SCIT; SCIT: 17 trials, SLIT 42 trials</td>
<td>SSD: 0.27 (0.03, 0.53) favours SCIT; SCIT: 16 trials, SLIT 35 trials</td>
<td>SSD: -0.52 (-0.07, 1.04) SCIT: 8 trials, SLIT 4 trials</td>
<td>—</td>
<td>10</td>
<td>April 2011</td>
<td></td>
</tr>
</tbody>
</table>

Note: AA = allergic asthma, AR = allergic rhinitis, QoL = quality of life, k = number of systematic reviews, RC = rhinoconjunctivitis, RR = relative risk, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, SSD = standardized score difference, TCS = total combined symptom–medication score.
*Treatment discontinuation, not discontinuation due to adverse events.
Safety
Data were collected for each outcome defined in the PICO statement (Exhibit 1); however, data were limited for local and systemic reactions. Data for anaphylaxis and death are summarized below.

Allergic asthma

SCIT
Of the three systematic reviews that involved SCIT, anaphylaxis or the use of epinephrine was assessed in two reviews (6, 10) (Exhibit 6). Abramson and colleagues estimated the incidence of near-fatal reactions (anaphylaxis) to be 1 per 1 million injections, with a relative risk of a systemic reaction (includes anaphylaxis, asthma, rhinitis or urticaria) of 2.45 (95% CI 1.91 to 3.13) in the SCIT group. Calderon and colleagues (10) reported the occurrence of three reactions that required the use of epinephrine in the SCIT group.

Abramson and colleagues (6) estimated the incidence of fatal reactions to be 1 per 2.5 million injections; however, data were not provided to support this estimate.

SLIT
Of the two systematic reviews that assessed the safety of SLIT, neither reported the occurrence of anaphylaxis. Calderon and colleagues (10) reported that one patient in the placebo group experience an exacerbation of asthma, while Tao and colleagues (24) reported that three patients from one trial experienced severe asthma. Death was not assessed in the systematic review by Tao and colleagues (24), and no deaths were reported in the systematic review by Calderon and colleagues (10).

Exhibit 6: Anaphylaxis and death reported in mixed populations (adults and children/adolescents) with allergic asthma

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Intervention</th>
<th>Anaphylaxis</th>
<th>Anaphylaxis or epinephrine reported?</th>
<th>Death</th>
<th>Death reported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calderon 2013</td>
<td>SCIT v. placebo</td>
<td>“Several serious TEAEs (some of which required epinephrine) were reported. Pichler et al26 mentioned use but did not state whether this concerned an active treatment or placebo group participant. The 4 incidents reported by Bousquet et al25 (3 of which required epinephrine) all concerned the active treatment group during the rush updosing phase”</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lu 2015</td>
<td>SCIT v. placebo</td>
<td>Not reported</td>
<td>Not assessed</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
</tbody>
</table>
Allergic rhinitis

SCIT

Five systematic reviews that assessed SCIT reported either anaphylaxis or death among participants with allergic rhinitis (9, 10, 17, 20, 21) (Exhibit 7). Of these, anaphylaxis or epinephrine use was reported in the SCIT group in all five systemic reviews; only one systematic review reported anaphylaxis in a participant receiving placebo (20).

Death was assessed in one systematic review, with no deaths reported (17). One systematic review reported that reactions were rare but associated with significant morbidity/mortality; however, no data were provided to support this statement (21).

SLIT

Seven systematic reviews that assessed SLIT reported either anaphylaxis or death among participants with allergic rhinitis (8-10, 12, 17, 19, 20, 22). One systematic review reported the safety of SLIT drops and tablets separately (9).
Anaphylaxis was assessed in seven systematic reviews (8-10, 17, 19, 20, 22). Of these, no anaphylactic reactions were reported in four reviews (9, 10, 17, 22). Two reviews reported the occurrence of anaphylaxis (19, 20). Meadows and colleagues (20) reported that anaphylaxis had occurred in four patients in the SLIT group of two trials, with no events in the placebo group. Manzotti and colleagues (19) reported that anaphylactic reactions had occurred in patients given a maintenance dose of Grazax as their first dose. One systematic review (8) reported that one patient in the placebo group and one patient receiving an allergen extract had received epinephrine following an adverse event.

Death was assessed in three systematic reviews (8, 9, 17). No deaths were reported in two systematic reviews (9, 17). CADTH reported that three deaths occurred in three trials, all in the SLIT group (8); however, the authors comment that none were considered by the manufacturer to be related to treatment.

The authors state that “In study GT-08 (first year), a 31-year-old male participant in the PPAE treatment group was diagnosed with subarachnoid haematoma/ subarachnoid haemorrhage and later died. In study P05238, a 28-year-old male patient in the PPAE group suffered a multiple drug overdose. In study P08067, a 42-year-old male patient who had been treated with PPAE completed the study and had reported no adverse events during the study. He later died. He had been off the study drug for a month. The cause of death was reported as unknown.”

Exhibit 7: Anaphylaxis and death reported in mixed populations (adults and children/adolescents) with allergic rhinitis

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Intervention</th>
<th>Anaphylaxis</th>
<th>Anaphylaxis or epinephrine reported</th>
<th>Death</th>
<th>Death reported</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calderon 2010</td>
<td>SCIT v. placebo</td>
<td>"All studies reported a higher proportion of adverse events (AEs) in SIT groups than in placebo groups. Systemic AEs requiring administration of subcutaneous adrenaline were observed (17, 21)." (both were in SCIT group)</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Calderon 2013</td>
<td>SCIT v. placebo</td>
<td>"The 2 earliest publications23,36 each featured 1 anaphylactic reaction caused by SCIT. More recent trials did not observe anaphylactic reactions."</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>SCIT v. placebo</td>
<td>"Post-injection anaphylaxis was reported in only one small trial159 (total n=76) but was considerably more frequent following active treatment, occurring in approximately 10 of 39 patients (compared with 1 of 37 receiving placebo); 8 of the 10 patients were</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Study</td>
<td>Group</td>
<td>Summary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lin 2013</td>
<td>SCIT v. placebo</td>
<td>"Thirteen anaphylactic reactions were reported in four trials* None reported in control group." Yes "No deaths were reported" No</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purkey 2012</td>
<td>SCIT v. placebo</td>
<td>"1 episode of anaphylaxis consisting of asthma and pruritus of the ear canal and oropharynx that required administration of epinephrine and oral corticosteroids” "In the patient who experienced anaphylaxis, symptoms developed 1 minute after administration of the 61st dose of treatment. Administration of subcutaneous epinephrine, intravenous methylprednisone, and nebulized salbutamol resulted in rapid resolution of symptoms. SCIT was discontinued in this patient” Yes "Local and systemic reactions (rare but with significant morbidity/mortality if they occur).” [Data not provided to support this statement] Unclear</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLIT</td>
<td>Devillier 2014</td>
<td>SLIT v. placebo</td>
<td>Not reported</td>
<td>Not assessed</td>
<td>Not reported</td>
</tr>
<tr>
<td>CADTH 2014</td>
<td>SLIT v. placebo</td>
<td>"In studies P05238, P05239, and P08067, it was mentioned that no participants experienced anaphylactic shock, and in studies GT-02, GT-07, GT-08, GT-12, and GT-14, there was no specific mention of anaphylactic shock. No incidence of anaphylaxis was reported in GT-02, GT-07, GT-08, and GT-12. In study P05238, one participant in the PPAE group received epinephrine due to an adverse event that occurred following the first administration of the study drug, and one placebo-treated patient used epinephrine in response to an anxiety attack, which the manufacturer stated was not an indicated (or medically appropriate) use for this medication.” Yes "There were no deaths reported in studies GT-07, GT-02, GT-14, GT-12, and P05239. In studies GT-08, P05238, and P08067, one death was reported in each study, as described below, but none were considered by the manufacturer to be treatment related.” Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subgroup analyses

Efficacy among adults with allergic asthma or allergic rhinitis

One systematic review (24) provided a pooled effect estimate of SLIT for the outcomes of interest among adults with allergic asthma (Exhibit 8). Tao and colleagues (24) reported a significant improvement in symptom scores among participants taking SLIT relative to those taking placebo.

<table>
<thead>
<tr>
<th>Study</th>
<th>Treatment(s) Compared</th>
<th>Summary of Findings</th>
<th>SLIT vs. Placebo</th>
<th>Placebo vs. SLIT</th>
<th>Not Reported</th>
<th>Not Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calderon 2013</td>
<td>SLIT v. placebo</td>
<td>"Bahceciler et al.(^{22}) did not observe any AEs of note with a maintenance dose of 8 mg of “Der p” allergens in children and adolescents. In contrast, de Bot et al.(^{31}) studied a maintenance dose of 2 mg of Der p 1 allergen and reported that 96% of both active and placebo group patients experienced TEAEs (including a high proportion of nonlocal AEs). Nevertheless, no immunotherapy-dependent serious AEs were reported in any of the active groups."</td>
<td>No</td>
<td>Not reported</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Lin 2013</td>
<td>SLIT v. placebo</td>
<td>"...no life-threatening reactions, anaphylaxis, or deaths were reported in these trials."</td>
<td>No</td>
<td>"...no life-threatening reactions, anaphylaxis, or deaths were reported in these trials."</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>SLIT v. placebo</td>
<td>"Anaphylaxis was reported in two trials(^{192,195}) and occurred in 4 of 427 patients receiving active treatment and in none of 282 patients receiving placebo."</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Manzotti 2013</td>
<td>SLIT (Grazax or Oralair) v. placebo</td>
<td>"However, it seems not advisable to use Grazax, that starts directly with the maintenance dose, in subjects with an history of systemic reactions to SCIT, because anaphylactic reactions at the first dose were reported in such subjects (21)"</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Radulovic 2010</td>
<td>SLIT v. placebo</td>
<td>"None of the studies reported anaphylaxis."</td>
<td>No</td>
<td>Not reported</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Calderon 2010</td>
<td>SLIT drops v. placebo</td>
<td>"...no life-threatening AEs or fatalities were described."</td>
<td>No</td>
<td>"...no life-threatening AEs or fatalities were described."</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Calderon 2010</td>
<td>SLIT tablets v. placebo</td>
<td>"All seven studies reported on safety in detail; the principal AEs were mild, local and transient and none required adrenaline administration. Treatment-related SAEs were not observed."</td>
<td>No</td>
<td>"All seven studies reported on safety in detail; the principal AEs were mild, local and transient and none required adrenaline administration. Treatment-related SAEs were not observed."</td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>

Note: CI = confidence interval, NA = not assessed, NR = not reported, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, TEAE = treatment-emergent adverse event.
There was no significant difference between groups for medication scores.

No data were available for the efficacy of SCIT among adults with allergic asthma.

Two systematic reviews assessed the efficacy of SLIT among adults with allergic rhinitis (20, 22). Meadows and colleagues (20) reported a significant improvement in total combined symptom–medication score, symptom score, medication score, and disease-specific quality of life among participants in the SLIT group relative to those in the placebo group. Radulovic and colleagues (22) reported a significant improvement in symptom scores among participants in the SLIT group relative to those in the placebo group.

One systematic review assessed the efficacy of SCIT among adults with allergic rhinitis. Meadows and colleagues (20) reported significantly better symptom and medication scores among participants in the SLIT group relative to those in the placebo group.

Exhibit 8: Efficacy of subcutaneous and sublingual immunotherapy among adults with allergic asthma or rhinitis

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Population</th>
<th>Allergens</th>
<th>Comparison</th>
<th>Unadjusted SMD (95% CI); I^2, k</th>
<th>TCS</th>
<th>Symptom score</th>
<th>Medication score</th>
<th>Disease-specific QoL</th>
<th>Adherence*</th>
<th>AMSTAR</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tao 2014</td>
<td>AA, with or without AR and/or conjunctivitis</td>
<td>HDM, grass, birch</td>
<td>SLIT v. placebo</td>
<td>-0.40 (-0.76, -0.04); 0%; 2</td>
<td>-0.40 (-0.76, -0.04); 0%; 2</td>
<td>0.00 (-0.36, 0.36); 0%; 2</td>
<td>-</td>
<td>-</td>
<td>6</td>
<td>March 2012</td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, fungi, Parietaria</td>
<td>SLIT v. placebo</td>
<td>-0.44 (-0.62, -0.27); 41%; 5</td>
<td>-0.44 (-0.62, -0.27); 41%; 5</td>
<td>-0.38 (-0.49, -0.27); 49%; 33</td>
<td>-0.35 (-0.47, -0.23); 45%; 27</td>
<td>-0.37 (-0.52, -0.22); NR; 6</td>
<td>-</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td>Radulovic 2010</td>
<td>AR</td>
<td>Parietaria, tree or ragweed pollen, HDM, cat</td>
<td>SLIT v. placebo</td>
<td>-0.44 (-0.56, -0.31); 58%; 34</td>
<td>-0.44 (-0.56, -0.31); 58%; 34</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>August 2009</td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, fungi, Parietaria</td>
<td>SCIT v. placebo</td>
<td>-0.68 (-0.89, -0.47); 59%; 16</td>
<td>-0.68 (-0.89, -0.47); 59%; 16</td>
<td>-0.53 (-0.75, -0.32); 58%; 15</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>April 2011</td>
<td></td>
</tr>
</tbody>
</table>

Note: AA = allergic asthma, AR = allergic rhinitis, HDM = house dust mite, k = number of systematic reviews, QoL = quality of life, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, SMD = standard mean difference, TCS = total combined symptom–medication score.

Treatment discontinuation, not discontinuation due to adverse events.
Safety among adults with allergic asthma or allergic rhinitis

None of the included systematic reviews assessed anaphylaxis or death among adults with allergic asthma (Exhibit 9).

One study assessed anaphylaxis and death among adults with allergic rhinitis. In their 2014 report, the Canadian Agency for Drugs and Technologies in Health (CADTH) reported that five participants in the SLIT group experienced anaphylaxis, 3 of whom were treated with epinephrine (8). There were no anaphylactic reactions reported in the placebo group.

CADTH reported that three deaths occurred in the SLIT group of three trials involving adults with allergic rhinitis (8); however, none were considered by the manufacturer to be related to treatment.

No systematic reviews assessed anaphylaxis or death among adults with allergic rhinitis who received SCIT.
Exhibit 9: Anaphylaxis and death reported among adults with allergic asthma or rhinitis

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Intervention</th>
<th>Anaphylaxis</th>
<th>Anaphylaxis or epinephrine use?</th>
<th>Death</th>
<th>Death reported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td>No studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td>CADTH 2014</td>
<td>SLIT v. placebo</td>
<td>“In study GT-14, five participants in the study drug group had anaphylactic reactions that were reported as probably being study drug related. One was considered of moderate severity and the remaining four were considered mild. Three participants were treated with epinephrine. All participants recovered from the event. No anaphylactic reaction was reported for the placebo group.”</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval, NA = not assessed, NR = not reported, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, TEAE = treatment-emergent adverse event.

Efficacy among children with allergic asthma or allergic rhinitis

One systematic review assessed the efficacy of SLIT among children with allergic asthma (24) (Exhibit 10). Tao and colleagues (24) reported significant improvements in symptom and medication scores among participants taking SLIT compared with those taking placebo. Total combined symptom–medication score, disease-specific quality of life, and adherence were not assessed.

Two reviews assessed the efficacy of SLIT among children with allergic rhinitis (20, 22). Meadows and colleagues (20) and Radulovic and colleagues (22) both reported a significant improvement in symptom scores among children taking SLIT compared with those taking placebo. Both reviews reported no significant difference between groups for medication scores. Meadows and colleagues (20) reported a significant improvement in disease-specific quality of life among children in the SLIT group compared with those in the placebo group.

None of the included systematic reviews assessed the efficacy of SCIT in children with allergic asthma or allergic rhinitis. Two systematic reviews provided narrative summaries of the use of SCIT in this population (10, 16).
Exhibit 10: Efficacy of subcutaneous and sublingual immunotherapy among children with allergic asthma or rhinitis

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Population</th>
<th>Allergens</th>
<th>Comparison</th>
<th>TCS</th>
<th>Unadjusted SMD (95% CI); I^2; k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tao 2014</td>
<td>AA, with or without AR and/or conjunctivitis</td>
<td>HDM, grass, birch</td>
<td>SLIT v. placebo</td>
<td>–</td>
<td>-0.87 (-1.54, -0.21); 92%; 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.10 (-2.06, -0.14); 94%; 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>AR with or without AA</td>
<td>Grass, tree or ragweed pollen, Alternaria and Parietaria species</td>
<td>SLIT v. placebo</td>
<td>–</td>
<td>-0.24 (-0.35, -0.13); 0%; 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.08 (-0.25, 0.08); 43%; 8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.31 (-0.57, -0.04); NA; 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Radulovic 2010</td>
<td>AR</td>
<td>Parietaria, tree or ragweed pollen, HDM, cat</td>
<td>SLIT v. placebo</td>
<td>–</td>
<td>-0.52 (-0.94, -0.10); 92%; 15</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.16 (-0.32, 0.00); 36%; 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: AA = allergic asthma, AR = allergic rhinitis, HDM = house dust mite, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, NR = not reported, SMD = standard mean difference.

Safety

None of the included systematic reviews assessed anaphylaxis or death among children with allergic asthma (Exhibit 11).

Four systematic reviews assessed the safety of SLIT among children with allergic rhinitis (8, 16, 17, 20). Of these, two reviews reported that no anaphylaxis occurred among the included trials (16, 17), while three reviews reported that epinephrine had been administered to a participant (8, 16, 20). Most participants who required epinephrine were in the SLIT group.

Two systematic reviews assessed deaths among children with allergic rhinitis treated with SLIT (8, 17). No deaths were reported.

One systematic review assessed the safety of SCIT among children with allergic rhinitis (17). There were no reported cases of anaphylaxis or death among children taking SCIT.
Exhibit 11: Anaphylaxis and death reported among children with allergic asthma or rhinitis

<table>
<thead>
<tr>
<th>Study, year</th>
<th>Intervention</th>
<th>Anaphylaxis</th>
<th>Anaphylaxis or epinephrine use?</th>
<th>Death</th>
<th>Death reported?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No systematic reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CADTH 2014</td>
<td>SLIT v. placebo</td>
<td>“In study P05239, three participants received epinephrine. In one participant, it was given for an allergic reaction following the first administration of the PPAE under the supervision of the investigator. In the other two cases, one participant in the PPAE group had viral pharyngitis and one participant in the placebo group had asthma exacerbation”</td>
<td>Yes</td>
<td>“There were no deaths reported in studies GT-07, GT-02, GT-14, GT-12, and P05239.” [GT-12 and P05239 involve children]</td>
<td>No</td>
</tr>
<tr>
<td>Lin 2013 ID268</td>
<td>SLIT v. placebo</td>
<td>“No life threatening systemic reactions or anaphylaxis were reported in these trials”</td>
<td>No</td>
<td>“No deaths were reported”</td>
<td>No</td>
</tr>
<tr>
<td>Larenas-Linnemann 2011</td>
<td>SLIT v. placebo</td>
<td>“No anaphylaxis was found among 2469 treated children”</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>“…epinephrine was administered to 3 children (2 in the active group and 1 in the placebo group), with only one administration due to a reaction to the tablet: this patient experienced lip angioedema, slight dysphagia, and intermittent cough with no other symptoms immediately after the first dose; epinephrine administration resolved this moderate local reaction (as judged by the investigator) and the patient discontinued participation in the trial.”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>SLIT v. placebo</td>
<td>Only two trials189,192 (total n=782) reported on adrenaline use. In each study, one instance of an AE in response to SLIT administration was treated with adrenaline. In both cases, the patients were receiving active treatment. [Reference 189 involves children only]</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lin 2013</td>
<td>SCIT v. placebo</td>
<td>“There were no reports of anaphylaxis”</td>
<td>No</td>
<td>“There were no reports of... deaths”</td>
<td>No</td>
</tr>
<tr>
<td>Lin 2013</td>
<td>SCIT v. SLIT (direct comparison)</td>
<td>“Among these three studies with a total of 135 patients.... No systemic reactions were reported in patients receiving sublingual immunotherapy. Among patients receiving subcutaneous immunotherapy, four experienced systemic reactions, including 1 anaphylaxis event and 3 patients with moderate – severe respiratory symptoms.”</td>
<td>Yes</td>
<td>Not reported</td>
<td>Not assessed</td>
</tr>
</tbody>
</table>

Note: CI = confidence interval, SCIT = subcutaneous immunotherapy, SLIT = sublingual immunotherapy, TEAE = treatment-emergent adverse event.
Key messages

Children and adults
Allergic asthma (k= 3 SRs)
- SCIT is more effective than placebo for reducing asthma symptom scores (based on 2 SRs).
- SLIT is more effective than placebo for reducing symptom and medication scores (based on 1 RCT).
- Anaphylaxis was reported for SCIT but not SLIT.
- No deaths were reported.

Allergic rhinitis (k = 16 SRs)
- SCIT is more effective than placebo at reducing allergic rhinitis symptom scores (2 SRs), total combined symptom–medication score, and medication scores and at improving disease specific quality of life (1 SR).
- SCIT is associated with more discontinuations than placebo (1 SR).
- SLIT is more effective than placebo at reducing total combined symptom–medication score, symptom scores, and medication scores (2 SRs) and at improving disease-specific quality of life (1 SR).
- SLIT is associated with more discontinuations than placebo (1 SR).
- Oralair is better than Grazax at reducing symptom scores (1 SR).
- SCIT is more effective than SLIT at improving medication scores (1 SR) and may be better than SLIT at improving symptom scores (1 of 2 SRs). There was no significant difference in disease-specific quality of life (1 SR).
- Anaphylaxis was reported for SCIT by all SRs (k= 6); no deaths were reported. Anaphylaxis was reported in 3 of 9 SRs that assessed SLIT; three deaths were reported in 1 SR in the SLIT group.
Exhibit 12: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among children and adults

<table>
<thead>
<tr>
<th>Comparison*</th>
<th>Author, year</th>
<th>Efficacy</th>
<th>Anaphylaxis reported?</th>
<th>AMSTAR score</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>Lu 2015</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>7</td>
<td>February 2013</td>
</tr>
<tr>
<td></td>
<td>Abramson 2010</td>
<td>○○○○○○</td>
<td>Yes</td>
<td>7</td>
<td>August 2005</td>
</tr>
<tr>
<td>SLIT v. placebo</td>
<td>Tao 2013</td>
<td>○○○○○○</td>
<td>No</td>
<td>6</td>
<td>March 2012</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>Dranitsaris 2014</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td></td>
<td>Meadows 2013</td>
<td></td>
<td>Yes</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td>SLIT v. placebo</td>
<td>Devillier 2014</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>5</td>
<td>December 2012</td>
</tr>
<tr>
<td></td>
<td>Dranitsaris 2014</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td></td>
<td>Meadows 2013</td>
<td>○○○○○○</td>
<td>Yes</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td></td>
<td>Radulovic 2010</td>
<td>○○○○○○</td>
<td>No</td>
<td>10</td>
<td>August 2009</td>
</tr>
<tr>
<td>Oralair v. Grazax (SLIT v. SLIT)</td>
<td>Dranitsaris 2014</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>3</td>
<td>December 2012</td>
</tr>
<tr>
<td>SCIT v. SLIT</td>
<td>Meadows 2013</td>
<td>○○○○○○</td>
<td>Yes</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td></td>
<td>Dranitsaris 2014</td>
<td>○○○○○○</td>
<td>Not assessed</td>
<td>3</td>
<td>December 2012</td>
</tr>
</tbody>
</table>

*In cases of immunotherapy v. immunotherapy, significance is reported relative to the first agent listed in the heading.

Adults

Allergic asthma

- No systematic reviews were identified that assessed the efficacy or safety of SCIT or SLIT in adults with allergic asthma

Allergic rhinitis (K = 3 SRs)

- SLIT is more effective than placebo at reducing total combined symptom–medication score (1 SR), symptom scores (2 SRs), medication scores (1 SR) and improving disease-specific quality of life (1 SR)
- Five anaphylactic reactions were reported in the SLIT group of one trial (1 SR)
- Three deaths were reported in the SLIT group (1 SR)
Exhibit 13: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among adults

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Author, year</th>
<th>Efficacy</th>
<th>Anaphylaxis reported?</th>
<th>AMSTAR score</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>No reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLIT v. placebo</td>
<td>Meadows 2013</td>
<td>○○○○○</td>
<td>Not assessed</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td></td>
<td>Radulovic 2010</td>
<td>○○○○○</td>
<td>Not assessed</td>
<td>10</td>
<td>August 2009</td>
</tr>
<tr>
<td></td>
<td>CADTH 2014</td>
<td>Not reported</td>
<td>Yes</td>
<td>7</td>
<td>June 2014</td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>Meadows 2013</td>
<td>○○○○○</td>
<td>Not assessed</td>
<td>10</td>
<td>April 2011</td>
</tr>
</tbody>
</table>

From LEFT to RIGHT, circles represent: total combined symptom–medication score, symptom score, medication score, disease-specific quality of life, adherence/discontinuation.
- A green circle indicates that immunotherapy is significantly better than placebo.
- A red circle indicates that immunotherapy is significantly worse than placebo.
- A grey circle indicates that there is no significant difference between the immunotherapy and placebo.
- A white circle indicates that the outcome was not available for analysis.

In cases of immunotherapy v. immunotherapy, significance is reported relative to the first agent listed in the heading.

Children

Allergic asthma (k = 1 SR)
- SLIT was more effective than placebo at improving symptom and medication scores.
- Anaphylaxis and death were not assessed among children with allergic asthma using SLIT.
- No data were available for SCIT among this population.

Allergic rhinitis (k = 5 SRs)
- SLIT was more effective than placebo at improving symptom scores, and there were no significant differences for medication scores (2 SRS).
- Anaphylaxis was reported by 2 systematic reviews in the SLIT group; epinephrine use was reported in one additional systematic review.
- There were no deaths among children in the SLIT group (2 SRs).
- There were no reports of anaphylaxis or death among children receiving SCIT (1 SR).
Exhibit 14: Summary of efficacy and safety of subcutaneous and sublingual immunotherapy among children and adults

<table>
<thead>
<tr>
<th>Comparison</th>
<th>Author, year</th>
<th>Efficacy</th>
<th>Anaphylaxis reported?</th>
<th>AMSTAR score</th>
<th>Search date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic asthma</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>No reviews</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLIT v. placebo</td>
<td>Tao 2014</td>
<td></td>
<td>Not assessed</td>
<td>6</td>
<td>March 2012</td>
</tr>
<tr>
<td>Allergic rhinitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SLIT v. placebo</td>
<td>Meadows 2013</td>
<td></td>
<td>Not assessed</td>
<td>10</td>
<td>April 2011</td>
</tr>
<tr>
<td></td>
<td>Radulovic 2010</td>
<td></td>
<td>Not assessed</td>
<td>10</td>
<td>August 2009</td>
</tr>
<tr>
<td></td>
<td>CADTH 2014</td>
<td>Not reported</td>
<td>Yes</td>
<td>7</td>
<td>June 2014</td>
</tr>
<tr>
<td></td>
<td>Lin 2013</td>
<td>Not reported</td>
<td>No</td>
<td>11</td>
<td>May 2012</td>
</tr>
<tr>
<td></td>
<td>Larenas-Linnemann 2011</td>
<td>Not reported</td>
<td>Yes</td>
<td>5</td>
<td>April 2011</td>
</tr>
<tr>
<td>SCIT v. placebo</td>
<td>Lin 2013</td>
<td>Not reported</td>
<td>No</td>
<td>11</td>
<td>May 2012</td>
</tr>
<tr>
<td>SCIT v. SLIT</td>
<td>Lin 2013</td>
<td>Not reported</td>
<td>Yes (SCIT)</td>
<td>11</td>
<td>May 2012</td>
</tr>
</tbody>
</table>

From LEFT to RIGHT, circles represent: total combined symptom–medication score, symptom score, medication score, disease-specific quality of life, adherence/discontinuation

- A green circle indicates that immunotherapy is significantly better than placebo
- A red circle indicates that immunotherapy is significantly worse than placebo
- A grey circle indicates that there is no significant difference between the immunotherapy and placebo
- A white circle indicates that the outcome was not available for analysis

In cases of immunotherapy v. immunotherapy, significance is reported relative to the first agent listed in the heading.
References

Appendix 1: Search strategy

Allergens – Immunotherapy - Allergic Rhinitis

Final Strategies
2015 May 31

OVID Multifile

Database: Ovid MEDLINE(R) In-Process & Other Non-Indexed Citations and Ovid MEDLINE(R) <1946 to Present>, Embase <1980 to 2015 Week 22>

Search Strategy:

1. exp Rhinitis, Allergic/ (48188)
2. (allerg* adj1 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (34378)
3. ((seasonal* or nonseasonal* or non-seasonal* or perennial*) adj1 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (1925)
4. ("seasonal AR" or "nonseasonal AR" or "non-seasonal AR" or "perennial AR").tw,kw. (391)
5. (allerg* adj1 asthma*).tw,kw. (22947)
6. ((seasonal* or nonseasonal* or non-seasonal* or perennial*) adj1 asthma*).tw,kw. (662)
7. (hay fever* or hay fever* or hay asthma*).tw,kw. (6956)
8. (pollen* adj2 allerg*).tw,kw. (9641)
9. (pollen* adj2 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (698)
10. pollinos#.tw,kw. (3923)
11. summer bronchit#.tw,kw. (1)
12. (((animal$1 or dander or cat$1 or dog$1 or pet$1) adj3 (allerg* or hypersensitiv*)).tw,kw. (7315)
13. ((dust$1 or fungus or fungi or mite$1 or mold* or mould* or insect or insects) adj3 (allerg* or hypersensitiv*)).tw,kw. (14490)
14. (ambrosia or grass$2 or plant$1 or weed$1 or ragweed$1 or tree or trees) adj3 (allerg* or hypersensitiv*).tw,kw. (8497)
15. (dander/ or cats/ or dogs/ or pets/ or exp Dust/ or exp Mites/ or exp Fungi/ or exp Poaceae/ or Plant Weeds/ or Trees/ or Ambrosia/ or "Insect Bites and Stings") and exp Hypersensitivity/ (52636)
16. or/1-15 (135804)
17. exp Desensitization, Immunologic/ (25434)
18. desensit#ation*.tw,kw. (44862)
19. (allergen* adj2 (desensiti* or immunotherap* or immuno-therap* or immune therap* or (immunolog* adj therap*))).tw,kw. (5432)
20. (hyposensit#ation* adj2 therap*).tw,kw. (352)
21. ((sublingual* or sub-lingual* or subcutaneous * or sub-cutaneous*) adj2 (desensiti* or immunotherap* or immunotherap* or immune therap* or (immunolog* adj therap*)).tw,kw. (2948)
22. (SLIT or SCIT).tw,kw. (28744)
23. Oralair.tw,kw. (93)
24. (pollen$1 adj2 extract$1).tw,kw. (34378)
25. exp Plant Extracts/ and exp Pollen/ (1941)
26. (pollen* adj2 (desensiti* or immunotherap* or immuno-therap* or immune therap* or (immunolog* adj therap*)).tw,kw. (757)
27. (Grastek or Grazax).tw,kw. (269)
28. (grass* adj2 (desensiti* or immunotherap* or immuno-therap* or immune therap* or (immunolog* adj therap*) or vaccin*)).tw,kw. (671)
29. Ragwitek.tw,kw. (5)
30. (pollinex or parietaria judaica pollen*).tw,kw. (332)
31. (allergen* adj2 (extract$1 or serum$1)).tw,kw. (5476)
32. or/17-31 (97598)
33. Allergens/ (75318)
34. allergen*.tw,kw. (104332)
35. 33 or 34 (126289)
36. exp Immunotherapy/ (350999)
37. (immunotherap* or immuno-therap* or immune therap* or (immunolog* adj therap*)).tw,kw. (126854)
38. 36 or 37 (398154)
39. administration, sublingual/ (6517)
40. exp Injections, Subcutaneous/ (119776)
41. (sublingual* or sub-lingual* or subcutaneous * or sub-cutaneous*).tw,kw. (21657)
42. or/39-41 (143330)
43. 35 and 38 and 42 (3106)
44. 32 or 43 (97811)
45. 16 and 44 (15146)
46. limit 45 to systematic reviews [Limit not valid in Embase; records were retained] (8924)
47. meta analysis.pt. (56061)
exp meta-analysis as topic/ (34057)
(meta-analy* or metanaly* or metaanaly* or met analy* or integrative research or integrative review* or integrative overview* or research integration or research overview* or collaborative review*).kw,tw. (182897)
(systematic review* or evidence-based review* or evidence-based overview* or evidence-based meta-analysis*).kw,tw. (217293)
exp Technology assessment, biomedical/ (21003)
((network* or network-based) adj (MA or MAs)).kw,tw. (10)
(NMA or NMA or MTC or MTCs or MAIC or MAICs).kw,tw. (10577)
((indirect* or mixed) adj2 compar*).kw,tw. (7249)
(multi* adj treatment* adj2 compar*).kw,tw. (315)
(cochrane or health technology assessment or evidence report).jw. (26825)
or/47-56 (418429)
45 and 57 (426)
46 or 58 (8993)
exp Animals/ not (exp Animals/ and Humans/) (8148068)
59 not 60 (8217)
(comment or editorial or interview or news).pt. (1543141)
(letter not (letter and randomized controlled trial)).pt. (1758791)
61 not (62 or 63) (8026)
limit 64 to yr="2010-current" (3249)
65 use prmz (136) [MEDLINE RECORDS]
exp allergic rhinitis/ (48188)
(allerg* adj1 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (34378)
((seasonal* or nonseasonal* or non-seasonal* or perennial*) adj1 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (1925)
("seasonal AR" or "nonseasonal AR" or "non-seasonal AR" or "perennial AR").tw,kw. (391)
(allerg* adj1 asthma*).tw,kw. (22947)
((seasonal* or nonseasonal* or non-seasonal* or perennial*) adj1 asthma*).tw,kw. (662)
(hay fever* or hayfever* or hay asthma*).tw,kw. (6856)
pollen allergy/ (17944)
(pollen* adj2 allerg*).tw,kw. (9641)
(pollen* adj2 (rhinitis or rhinoconjunctivitis or rhino-conjunctivitis or rhinitides)).tw,kw. (698)
pollinos#.s.tw,kw. (3923)
summer bronchitis#.s.tw,kw. (1)
house dust allergy/ (1740)
(dust$1 or fungus or fungi or mold$1 or mold* or mould* or insect$1 or insect*) adj3 (allerg* or hypersensitiv*).tw,kw. (8497)
(ambrosia or grass$2 or plant$1 or weed$1 or ragweed$1 or tree or trees) adj3 (allerg* or hypersensitiv*).tw,kw. (8497)
desensitization/ (16638)
desensiti#ation*.tw,kw. (44862)
(allergen* adj2 (desensiti* or immunotherap* or immune therap* or (immunologic* adj therap*)).tw,kw. (5432)
(hyposensiti#ation* adj2 therap*).tw,kw. (352)
((sublingual* or sub-lingual* or subcutaneous * or sub-cutaneous*) adj2 (desensiti* or immunotherap* or immunotherapia* or immune therap* or (immunologic* adj therap*)).tw,kw. (2948)
(SLIT or SCIT).tw,kw. (28744)
Oralair.tw,kw. (93)
pollen extract/ (1246)
(pollen$1 adj2 extract$1).tw,kw. (3487)
exp plant extract/ (155647)
(pollen* adj2 (desensiti* or immunotherap* or immuno-therap* or immune therap* or (immunologic* adj therap*)).tw,kw. (757)
(GraStak or Grazax).tw,kw. (269)
green pollen vaccine/ (213)
(grass$1 adj2 (desensiti* or immunotherap* or immuno-therap* or immune therap* or (immunologic* adj therap*) or vaccin*).tw,kw. (671)
Ragwitek.tw,kw. (5)
ragweed pollen extract/ (19)
pollinex or parietaria judaica pollen*).tw,kw. (332)
(allergen* adj2 (extract$1 or serum$1)).tw,kw. (5476)
or/85-102 (246356)
exp allergen/ (52507)
allergen*.tw,kw. (104332)
Search Name: Allergens Immunotherapy

Date Run: 31/05/15 10:57:37.135

Description: Ottawa Heart Institute - 2015 May 31

ID Search Hits
#1 [mh "Rhinitis, Allergic"] 2179
#2 (allerg* near/2 (rhinitis or rhinoconjunctivitis or "rhinoconjunctivitis" or rhinitides)):ti,ab,kw 5643
#3 ((seasonal* or nonseasonal* or (non next seasonal*) or perennial*) near/2 (rhinitis or rhinoconjunctivitis or "rhinoconjunctivitis" or rhinitides)):ti,ab,kw 4052
#4 ("seasonal AR" or "nonseasonal AR" or "non-seasonal AR" or "perennial AR"):ti,ab,kw 73
#5 (allerg* near/2 asthma*):ti,ab,kw 2578
#6 (seasonal* or nonseasonal* or (non next seasonal*) or perennial*) near/2 asthma*:ti,ab,kw 207
#7 (hay next fever* or hayfever* or (hay next asthma*)):ti,ab,kw 620
#8 (pollen* near/3 allerg*):ti,ab,kw 113
#9 (pollen* near/3 (rhinitis or rhinoconjunctivitis or "rhinoconjunctivitis" or rhinitides)):ti,ab,kw 765
#10 (allergon*):ti,ab,kw 240
#11 (summer next bronch):ti,ab,kw 0
#12 ((animal* or dander or cat or cats or dog or dogs or pet or pets) near/4 (allerg* or hypersensitiv*)):ti,ab,kw 486
#13 ((dust* or fungus or fungi or mite or mites or mold* or mould* or insect or insects) near/4 (allerg* or hypersensitiv*)):ti,ab,kw 827
#14 ((ambrosia or grass* or plant or plants or weed or weeds or ragweed* or tree or trees) near/4 (allerg* or hypersensitiv*)):ti,ab,kw 1054
<table>
<thead>
<tr>
<th>Query</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>#15 ([mh "Insect Bites and Stings"] or [mh dander] or [mh cats] or [mh dogs] or [mh pets] or [mh Dust] or [mh Mites] or [mh Fungi] or [mh Poaceae] or [mh "plant weeds"] or [mh trees] or [mh Ambrosia]) and [mh Hypersensitivity]</td>
<td>1045</td>
</tr>
<tr>
<td>#16 (or #1-#15)</td>
<td>9388</td>
</tr>
<tr>
<td>#17 [mh "Desensitization, Immunologic"]</td>
<td>766</td>
</tr>
<tr>
<td>#18 (desensitization* or desensitisation*):ti,ab,kw</td>
<td>2062</td>
</tr>
<tr>
<td>#19 (allergen* near/3 (desensiti* or immunotherap* or immuno-therap* or (immune next therap*) or (immunologic* next therap*)):ti,ab,kw</td>
<td>472</td>
</tr>
<tr>
<td>#20 (hyposensitation near/3 therap*):ti,ab,kw</td>
<td>21</td>
</tr>
<tr>
<td>#21 ((sublingual* or (sub next lingual*) or subcutaneous* or (sub next cutaneous*)) near/3 (desensiti* or immunotherap* or immuno next therap*) or (immune next therap*) or (immunologic* next therap*)):ti,ab,kw</td>
<td>870</td>
</tr>
<tr>
<td>#22 (SLIT or SCIT):ti,ab,kw</td>
<td>1164</td>
</tr>
<tr>
<td>#23 Oralair:ti,ab,kw</td>
<td>7</td>
</tr>
<tr>
<td>#24 ((pollen or pollens) near/3 (extract or extracts)):ti,ab,kw</td>
<td>349</td>
</tr>
<tr>
<td>#25 [mh "Plant Extracts"] and [mh Pollen]</td>
<td>126</td>
</tr>
<tr>
<td>#26 (pollen* near/3 (desensiti* or immunotherap* or (immune next therap*) or (immunologic* next therap*):ti,ab,kw</td>
<td>316</td>
</tr>
<tr>
<td>#27 (Grastek or Grazax):ti,ab,kw</td>
<td>61</td>
</tr>
<tr>
<td>#28 (grass* near/3 (desensiti* or immunotherap* or (immune next therap*) or (immunologic* next therap*) or vaccin*)):ti,ab,kw</td>
<td>284</td>
</tr>
<tr>
<td>#29 Ragwitek:ti,ab,kw</td>
<td>0</td>
</tr>
<tr>
<td>#30 (pollinex or ("parietaria judaica* next pollen"):ti,ab,kw</td>
<td>29</td>
</tr>
<tr>
<td>#31 (allergen* near/3 (extract* or serum*):ti,ab,kw</td>
<td>358</td>
</tr>
<tr>
<td>#32 (or #17-#31)</td>
<td>4103</td>
</tr>
<tr>
<td>#33 [mh Allergens]</td>
<td>1553</td>
</tr>
<tr>
<td>#34 allergen*:ti,ab,kw</td>
<td>4223</td>
</tr>
<tr>
<td>#35 #33 or #34</td>
<td>4223</td>
</tr>
<tr>
<td>#36 [mh Immunotherapy]</td>
<td>6968</td>
</tr>
<tr>
<td>#37 (immunotherap* or (immune next therap*) or (immunologic* next therap*):ti,ab,kw</td>
<td>4921</td>
</tr>
<tr>
<td>#38 #36 or #37</td>
<td>10047</td>
</tr>
<tr>
<td>#39 (mh "administration, sublingual")</td>
<td>765</td>
</tr>
<tr>
<td>#40 (mh "Injections, Subcutaneous")</td>
<td>3548</td>
</tr>
<tr>
<td>#41 (sublingual* or (sub next lingual*) or subcutaneous* or (sub next cutaneous*):ti,ab,kw</td>
<td>14045</td>
</tr>
<tr>
<td>#42 (or #39-#41)</td>
<td>14598</td>
</tr>
<tr>
<td>#43 #35 and #38 and #42</td>
<td>552</td>
</tr>
<tr>
<td>#44 #32 or #43</td>
<td>4114</td>
</tr>
<tr>
<td>#45 #16 and #44 Publication Year from 2010 to 2015</td>
<td>619</td>
</tr>
</tbody>
</table>
Appendix 2: Excluded records

Excluded abstracts

5. M.Westerhout Najib. Impact of allergen immunotherapy on symptom-free days and healthcare costs in patients with grass pollen-induced allergic rhinitis in Germany. *Allergy: European Journal of Allergy and Clinical Immunology.* 2014/09//. Conference:September

9. V.Davila Garani. Pharmacoeconomic assessment of the use of a depigmented polymerised allergen extract in comparison to symptomatic treatment in patients with allergic rhinitis. *Allergy: European Journal of Allergy and Clinical Immunology.* 2014/09//. Conference:September

15. H.Cartier Nelson. Meta-analysis of allergen immunotherapy for treatment of grass pollen allergies indicates sublingual immunotherapy tablet is comparable to subcutaneous immunotherapy. *Allergy: European Journal of Allergy and Clinical Immunology.* 2013/09//. Conference:September
16. P. Dreyfus Devillier. An evaluation of data on the relative clinical impact of sublingual allergen immunotherapy tablets and symptomatic medications in grass-pollen-induced allergic rhinoconjunctivitis. *Allergy: European Journal of Allergy and Clinical Immunology*. 2013/09//. Conference: September

22. M. Strodl Andersen Calderon. Meta-analysis supports that the efficacy of grass allergy immunotherapy tablets is comparable to subcutaneous immunotherapy. *Allergy: European Journal of Allergy and Clinical Immunology*. 2011/06//. Conference: June

24. J. Lehnigk Kettner. A high-dose hypoallergenic house dust mite preparation improves lung function parameters in rhinoconjunctivitis patients with bronchial hyperreactivity. *Allergy: European Journal of Allergy and Clinical Immunology*. 2011/06//. Conference: June

27. M. Mosges Calderon. From evidence-based medicine to practice in specific grass pollen immunotherapy of seasonal allergic rhinoconjunctivitis. *Journal of Allergy and Clinical Immunology*. 2010///. Conference: AB123

28. O. Misirligil Goksel. Allergen specific immunotherapy studies in Turkey: Results of a systematic review with meta-analysis. *Allergy: European Journal of Allergy and Clinical Immunology*. 2010/06//. Conference: June

29. P. Brehler Devillier. The clinical development of specific immunotherapies: Specific methodological issues and clinical interpretation of results. *Allergy: European Journal of Allergy and Clinical Immunology*. 2010/06//. Conference: June

Grey literature excluded at the title and abstract review stage

Appendix 3: Included records

18. Lu Y, Xu L, Xia M, et al. The efficacy and safety of subcutaneous immunotherapy in

Foreign articles not translated

Appendix 4: Irretrievable records

Appendix 5: AMSTAR rating for each included systematic review

<table>
<thead>
<tr>
<th>Author, date</th>
<th>A priori design</th>
<th>Duplicate selection/ extraction</th>
<th>Literature search</th>
<th>Publicati on status</th>
<th>List of studies</th>
<th>Study characteristics</th>
<th>Quality assessed</th>
<th>Quality appropriately used</th>
<th>Methods appropriate</th>
<th>Publication bias assessed</th>
<th>Conflict s stated</th>
<th>AMSTAR rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lu 2015</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>Devilier 2014</td>
<td>No</td>
<td>Can’t answer</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>Dranitsaris 2014</td>
<td>No</td>
<td>Can’t answer</td>
<td>No</td>
<td>No</td>
<td>NO</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>3</td>
</tr>
<tr>
<td>Feng 2014</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>8</td>
</tr>
<tr>
<td>Tao 2013</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>Calderon 2013</td>
<td>No</td>
<td>Can’t answer</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Purkey 2013</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>Meadows 2013</td>
<td>Yes</td>
<td>10</td>
</tr>
<tr>
<td>Manzotti 2013</td>
<td>No</td>
<td>Can’t answer</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>1</td>
</tr>
<tr>
<td>Larenas-Linnemann 2013</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>6</td>
</tr>
<tr>
<td>Larenas-Linnemann 2011</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>5</td>
</tr>
<tr>
<td>Calderon 2011</td>
<td>Yes</td>
<td>11</td>
</tr>
<tr>
<td>Seidman 2015</td>
<td>No</td>
<td>0</td>
</tr>
<tr>
<td>Radulovic 2011</td>
<td>Yes</td>
<td>No</td>
<td>10</td>
</tr>
<tr>
<td>Abramson 2010</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>NO</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>7</td>
</tr>
<tr>
<td>Study</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Can't answer</td>
<td>No</td>
<td>No</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>Calderon 2010</td>
<td>Yes</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Lin 2013</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>CADTH 2014</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bousquet 2011</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>NA</td>
<td>No</td>
<td>No</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>